목록pca (1)
운동하는 공대생

0. Intro 데이터는 보통 여러 차원(High-dimensional)으로 구성이 되어 있다. 이런 여러 고차원 데이터는 데이터를 분석하는 과정에서 시각화를 하거나 데이터에 대한 분석을 진행하기에 어려움이 존재한다. 그래서 이런 고차원의 데이터를 차원 축소 방식 PCA를 통해서 표현한다. 1. PCA PCA 의 추론 과정의 아이디어는 차원을 축소하는 axis 를 잡고 데이터와 axis 축의 projection을 구한다음 그 projection들의 값들의 분산이 최소가 되도록한다면 데이터들이 축소된 차원에서 분산이 가장 큰 특성을 가진 방향으로 축이 만들어진다는 아이디어이다. 더 자세하게 설명을 아래에서 해보겠다. 1.1 Maximum variance formulation PCA는 결국 차원을 축소하여..
Machine Learning
2023. 8. 2. 00:45