목록책 (3)
운동하는 공대생

이전까지는 영역에 대한 분할을 자동적으로 영상 전체에서 진행을 하였다. 하지만 이런 분할을 사용자가 원하는 분할을 하지 못하는 문제가 있었고 이런 문제를 해결하기 위해서 대화식 분할의 아이디어가 되었다. 1. 대화식 분할 1.1 능동 외곽선 능동 외곽선의 원리는 초기 곡선에서 시작해서 최적의 상태를 능동적으로 찾아가는 방식이다. - 수식 E(internal) = 내부 에너지로 곡선이 매끄러운 모양이 되도록 유도 E(image) = 영상 에너지는 물체의 경계에 에지가 나타난다는 사실에 기반하여 곡선이 에지에 위치하도록 유도 E(domain) = 도메인 에너지는 분할하려는 특정 물체의 모양 정보를 잘 유지하도록 유도 이렇게 에너지들의 총합들을 계산하고 이것을 최소가 되도록 하여 최적화를 진행한다. 1.2 G..

이제 이전까지는 에지를 더욱 잘 표현하기 위한 여러 가지 방법을 이용하였다. 그렇다면 이제 원래의 영상에서 에지를 검출한 영상으로 변환을 했다면 이제 그 에지를 통해서 물체에 대한 경계를 어떻게 에지들의 연결을 통해서 표현하는지 그 연결 방식에 대하여 말을 하겠다. 1. 허프 변환 먼저 이론에 대하여 설명을 하겠다. 위의 그림처럼 두 점을 지나는 y=ax+b라는 방정식이 존재할 때 기울기 a , y절편 b를 식에서 표현한다. 이것을 다시 a, b라는 공간으로 변환을 하면 빨간색 선은 원래 x, y 공간에서 빨간 점을 지나는 모든 직선들의 조합들을 표시한 것이고 a, b 공간에서의 주황선은 원래의 공간 x, y에서의 주황색 점을 지나는 모든 선의 조합들이다. 즉, 각 점을 지나는 모든 직선 중 두 점을 모..

1. 에지 검출 에지 검출 알고리즘은 물체 영상에서 물체 경계가 변하면서 발생하는 명암의 급격한 변화의 특성을 활용한다. 먼저 영상을 미분하는 이유는 기존 영상에서 미분을 통해서 기준점에서의 변화량을 측정하는 게 가능해서 이다. 이렇게 변화량에 대한 차이를 영상의 컨볼루션을 취하여 에지 영상을 만든다. (위의 그림에서는 (-1,1) 필터로 컨볼루션 한다.) 1.1 에지 연산자 영상에서는 보통 한번의 에지의 변화만 있는 게 아니라 여러 화소에 걸쳐 명암이 변하는 램프 에지(ramp edge)가 발생한다. 1차 미분을 통해서 (c)처럼 에지 영상을 구하면 에지가 구분이 된다. 하지만 두께가 있는 에지가 검출되며 위치 찾기(localization)의 문제가 발생한다. 그렇게 다시 한번 2차 미분을 진행하면 연..